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Abstract. We are extending the formation of matrix solutions un for linear and nonlinear wave
equations by construction of unitary anti-Hermitian–anti-commuting matrices up to the eighth
order. We use Clifford algebras C(0, n) with periodicity in modulo 8 to construct coupled matrix
solutions. We also propose to use the matrix solutions for describing the intrinsic rotations of
particles.

The proposed formation of the matrix solutions for wave equations includes both passage to
the moving frame of reference, reducing wave equations to ordinary differential equations,
and construction of the unitary anti-Hermitian–anti-commuting matrices of the nth order. The
conventional matrix algebra as in [1–3] is complemented by the Clifford algebra C(0, n) [4–6],
which allows us, due to the periodicity C(0, n) in modulo 8, to obtain not only the whole family
of matrix solutions un for n up to 8 but also coupled solutions. The unified exponential form of
matrix solutions un makes it possible to obtain various rotational properties of these solutions.
In the case of the linear wave equation for a free particle the matrix solutions with their rotational
properties are proposed for description of intrinsic rotations of the particle.

Our basic construction is a family of matrix functions

un(φ) = cos(φ)En + sin(φ)

m∑
j=1

aj Mj

m∑
j=1

a2
j = 1 n = 1, 2, . . . (1)

where En is the unit (n × n)-matrix. Complex linear-independent (n × n)-matrices Mj (j =
1, 2, . . . , m) should possess the following properties: they are unitary (M∗

j = M−1
j ), anti-

Hermitian (M∗
j = −Mj ) and anti-commuting (MiMj = −Mj Mi). The symbol ∗ denotes the

transition to a complex conjugate transposed matrix. For n = 1 we should set m = 1 and
M1 = i (i—imaginary unit). It is known [1–3] that m = 3 for n = 2, m = 1 for n = 3,
m = 4 for n = 4. The angular parameter φ is taken in two forms: φ = kz in the linear case
and φ = φ(αz) in the nonlinear case, where parameters k and α and variable z will be defined
below.

If a certain matrix M is unitary and anti-Hermitian then M−1 = −M . On the other hand
if any (n × n)-matrix M satisfies the property M2 = −En then M = −M−1. Thus we can
state that the algebra of matrices Mj is based on two main properties:

M2
j = −En and MiMj = −Mj Mi for i �= j. (2)

Properties (2) allow us to represent function un in the form of a matrix exponent

un(φ) = exp(iφaj Aj ) where Aj = −iMj . (3)
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Product aj Aj means summing over j = 1, . . . , m; matrices Aj are Hermitian in contrast to
anti-Hermitian matrices Mj .

Let us start with construction of matrices Mj which satisfy (2). For n = 2 we form a
matrix function u2 via unit quaternions, i.e. we take Mj = Hj where

H1 =
(

0 i
i 0

)
H2 =

(
0 −1
1 0

)
H3 =

(
i 0
0 −i

)
.

For n = 4 the following matrices can be proposed:

Bj =
(

Hj 0
0 −Hj

)
for j = 1, 2, 3 and B4 =

(
0 E2

−E2 0

)
.

For n = 8 we form the matrices

Cj =
(

Bj 0
0 −Bj

)
for j = 1, 2, 3, 4 and C5 =

(
0 E4

−E4 0

)
.

It is easy to verify that the four matrices B and the five matrices C are linear-independent and
satisfy (2).

Another way of constructing matrices of the fourth and the eighth order is based on
application of the Pauli and the Dirac matrices. Note that the Pauli matrices σj are Hermitian
and connected with quaternions via relations

σ1 = −iH1 σ2 = iH2 σ3 = −iH3.

The Dirac (4 × 4)-matrices γj for j = 1, 2, 3, 4 are formed from σ -matrices as usual

γj =
(

0 σj

−σj 0

)
for j = 1, 2, 3 and γ4 =

(
iE2 0
0 −iE2

)
.

In an analogous way we can form (8 × 8)-matrices from Hermitian iγj -matrices, i.e. we set

Dj =
(

0 iγj

−iγj 0

)
for j = 1, 2, 3, 4 and D5 =

(
iE4 0
0 −iE4

)
.

We define more exactly the two triples of (6 × 6)-matrices F from [3] as

Fj =
(

Hj 0
0 γj

)
and Fj+3 =

(
Hj 0
0 γj+1

)
for j = 1, 2, 3.

Each triple satisfies (2) and all six matrices are linear-independent.
For odd n it is known [3] that there do not exist two matrices which anti-commute with each

other in a set of unitary anti-Hermitian (3 × 3)-matrices. However, as is shown in [1] solution
u3 with a single unitary anti-Hermitian matrix has a rich intrinsic structure in a subspace based
on Hermitian matrices. The Clifford algebra C(0, n) for odd n gives additional possibilities
for construction of the matrix solution. The algebra C(0, n) has n generators ej which obey
properties (2) for j = 1, . . . , n. This algebra is realized as that of pairs [a, b], [c, d], . . . with
operations of addition ([a + c, b + d]), multiplication ([ac, bd]) and multiplication by real
numbers ([λa, λb]).

It follows from the Salingaros result [5] that C(0, 3) is realized in the form of the direct
sum H ⊕ H where H are the quaternions Hj . It is easy to verify that element M̂j = [Hj , Hj ]
satisfies the properties (2) provided Ên = [En, En] is the unit in C(0, n). Thus we construct,
in addition to u3, a matrix function in the form

u+
3(φ) = cos(φ)[E2, E2] + sin(φ)

3∑
j=1

aj [Hj , Hj ].
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Due to operations of addition and multiplication by real numbers the function u+
3 can be

written in the form u+
3 = [u2, u2]. Note that the pair [Hj , H ∗

j ] can be used to form the function
u−

3 = [u2, u∗
2]. Analogously, we can form the matrix functions of the fifth order u+

5 = [u4, u4]
and u−

5 = [u4, u∗
4] and of the seventh order u+

7 = [u6, u6] and u−
7 = [u6, u∗

6]. These two
forms, u+ and u−, of matrix solutions can be useful for description of coupled particles and
particle–anti-particle pairs.

We restrict ourselves by constructing unitary anti-Hermitian anti-commuting matrices up
to the eighth order because of the Coquereaux theorem of periodicity [6], which states that all
algebras C(0, n + 8) are isomorphic to the direct product of C(0, n) and C(0, 8).

Consider now the nonlinear Klein–Gordon (KG) equation for normalized value u in natural
units c = 1 = h̄

∂2u

∂t2
− !u +

dQ

du
= 0 Q(u) = λ2

4
(u2 − 1)2. (4)

It follows from the form of the anharmonic potential Q with two minima (basic states u = 1
and −1) that equation (4) describes a transition from one basic state to another. The parameter λ

is the mass. According to our approach we choose in the three-dimensional space the direction
x = ∑3

j=1 cj xj with
∑3

j=1 c2
j = 1, and next we pass to the moving frame of reference

z = x −vt (here v is the velocity) and reduce equation (1) to the ordinary differential equation

(v2 − 1)
d2u

dz2
= −λ2(u3 − u). (5)

Let us prove that all forms of the matrix functions constructed above satisfy the KG
equation for a special choice of the argument φ.

Theorem 1. The matrix functions un, u∗
n, u+

j , u−
j for indices n = 1, 2, . . . , 8 and j = 3, 5, 7

and for argument

φ ≡ φ(αz) = arccot(− sinh(αz)) α = λ

√
2

1 − v2
v2 < 1

satisfy equation (5) and, hence, (4).

Proof. Consider the function un(φ). From the definition of the angular parameter we find
cos(φ) = − tanh(αz) and sin(φ) = sech(αz). Differentiating the last equality with respect
to z and taking into account the preceding equality we obtain φ′ = α sin(φ) and φ′′ =
α2 sin(φ) cos(φ). To simplify the expressions we rewrite (1) in the form u = cos(φ)+sin(φ)&

where En is replaced by unity and the matrix sum is replaced by &. It follows from (2) and
the unit norm of vector a that equality &2 = −1 is valid. Simple computations lead to the
following two equalities:

d2u

dz2
= α2 sin(φ)(− sin(2φ) + cos(2φ)&)

u(u2 − 1) = 2 sin(φ)(− sin(2φ) + cos(2φ)&).

Now, due to the relation α2(v2 − 1) = −2λ2 we state that the function u = un(φ) satisfies
equation (5). In turn, for Hermitian conjugated matrix function u∗

n it is clear that M∗
j = −Mj

satisfies (2) and, hence, &2 = −1. Thus in the same way as above it is proved that u∗
n also

satisfies (5). Now it is evident that functions u+
j and u−

j satisfy (5) as well. The theorem is
proved. �

Note that the solution u1(φ) = exp(iφ) varies from 1 to −1 and its negative double
−u1(φ) = exp(i(φ + π)) varies from −1 to 1 if φ increases from 0 (for z = −∞) to π (for
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z = ∞). The solution u2(φ) = exp(iφaj Aj ) (summing over j = 1, 2, 3) for Aj = −iHj

varies from E2 to −E2 in the same region of φ.
Consider now a linear wave equation, the so-called Klein–Gordon–Fock (KGF) equa-

tion [4, 7]
∂2u

∂t2
− !u + µ2u = 0 (6)

where µ is the mass. Equation (6) can be derived from (4) if one takes Q = µ2u2/2.
For a free particle equation (6) for c = 1 = h̄ is obtained from the relativistic relation
E2 = p2c2 + µ2c4 [7] by using operators of energy E and momentum p = (p1, p2, p3) in
the form, respectively, ih̄∂/∂t and pj = −ih̄∂/∂xj . Note that the Schrödinger equation
i∂ψ/∂t = Hψ for Hamiltonian H =

√
p2 + µ2, when squared, also gives the same

equation (6).
If the origin of the moving frame of reference is placed at a pointwise particle so that

p = 0, then equation (6) turns into the equation of a harmonic oscillator

∂2u

∂t2
+ ω2u = 0 where ω2 = µ2. (7)

For un(φ) in the exponential form (3) with φ = kz we find due to (aj Aj )2 = En that
∂2un/∂t2 = −v2k2un. Thus un(kz) = exp(ikzaj Aj ) satisfies (7) and, hence, (6) provided
k2v2 = ω2 = µ2.

Each unitary matrix un(φ) (n = 2, . . . , 8) performs a certain rotation. For example, spin-
matrix u2(φ) according to the terminology of Penrose and Rindler [8] turns a unit sphere by
an angle 2φ around vector a = (a1, a2, a3). It is natural to connect the direction of vector a

with that of the intrinsic angular momentum, i.e. with the spin vector. The matrix u3 describes
rotations around three directions corresponding to basis vectors in a space of Hermitian matrices
Aj [1].

Due to the fact that un(kz + C) also satisfies (7) and (6) for any real C we can construct
a geometrical image of the pair u1(C) and u2(C) in the form of a torus for 0 � C � 2π and
for z = 0. Indeed, the solution u1(C) describes the unit cycle. Let the point exp(iC) for fixed
C be the centre of the unit sphere. In the time in which the parameter C varies from 0 to 2π

the solution u2(C) turns the unit sphere in such a way that the sphere forms a torus and each
point on the sphere describes a wound curve around the unit cycle.

The matrix u4(kz) = exp(ikzaj Aj ) for Aj = −iγj is remarkable in the fact that it satisfies
the Dirac equation. Consider, indeed, the Dirac equation in the form [9]

(iγ0∂/∂t − iγj pj − µ)u = 0 where iγ0 = γ4. (8)

The matrix u4(kz) being substituted into (8), provided p = 0 is in the moving frame of
reference, gives −kvγ4aj γj − µ = 0. This equation is satisfied for kv = µ, a4 = 1
and a1 = a2 = a3 = 0 due to the property γ 2

j = −1. It is evident that u∗
4(kz) satisfies

the Hermitian-conjugated Dirac equation. The KGF equation (6) can be decomposed via
(8 × 8)-matrices Dj into two equations: a basic one and another Hermitian-conjugated one
(analogously to the Dirac equations) with solutions u8 and u∗

8 which are based on matrices Dj

and D∗
j , respectively.

The solutions u4 and u8 constructed by use of matrices Bj and Cj , respectively, have
another significant property: u4 = diag(u2, u∗

2) for a = (a1, a2, a3, 0) and u8 = diag(u4, u∗
4)

for a = (a1, a2, a3, 0, 0). Due to this diagonal representation in the same way as for spin-
matrix u2(φ) the following result can be derived: the matrix solution u4(φ) performs a rotation
by the angle 4φ and the matrix solution u8(φ) performs a rotation by the angle 8π . We hope
that matrix solutions un with their rotational properties will be useful for description of the
intrinsic rotations of the particles.
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