Matrix solutions of wave equations and Clifford algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 336975
(http://iopscience.iop.org/0305-4470/33/39/311)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:32

Please note that terms and conditions apply.

Matrix solutions of wave equations and Clifford algebras

V V Gudkov
Institute of Mathematics and Computer Science, University of Latvia, Riga LV-1459, Latvia

Received 3 July 2000

Abstract

We are extending the formation of matrix solutions u_{n} for linear and nonlinear wave equations by construction of unitary anti-Hermitian-anti-commuting matrices up to the eighth order. We use Clifford algebras $C(0, n)$ with periodicity in modulo 8 to construct coupled matrix solutions. We also propose to use the matrix solutions for describing the intrinsic rotations of particles.

The proposed formation of the matrix solutions for wave equations includes both passage to the moving frame of reference, reducing wave equations to ordinary differential equations, and construction of the unitary anti-Hermitian-anti-commuting matrices of the nth order. The conventional matrix algebra as in [1-3] is complemented by the Clifford algebra $C(0, n)$ [4-6], which allows us, due to the periodicity $C(0, n)$ in modulo 8 , to obtain not only the whole family of matrix solutions u_{n} for n up to 8 but also coupled solutions. The unified exponential form of matrix solutions u_{n} makes it possible to obtain various rotational properties of these solutions. In the case of the linear wave equation for a free particle the matrix solutions with their rotational properties are proposed for description of intrinsic rotations of the particle.

Our basic construction is a family of matrix functions
$u_{n}(\phi)=\cos (\phi) E_{n}+\sin (\phi) \sum_{j=1}^{m} a_{j} M_{j} \quad \sum_{j=1}^{m} a_{j}^{2}=1 \quad n=1,2, \ldots$
where E_{n} is the unit $(n \times n)$-matrix. Complex linear-independent $(n \times n)$-matrices $M_{j}(j=$ $1,2, \ldots, m)$ should possess the following properties: they are unitary $\left(M_{j}^{*}=M_{j}^{-1}\right)$, antiHermitian $\left(M_{j}^{*}=-M_{j}\right)$ and anti-commuting $\left(M_{i} M_{j}=-M_{j} M_{i}\right)$. The symbol $*$ denotes the transition to a complex conjugate transposed matrix. For $n=1$ we should set $m=1$ and $M_{1}=\mathrm{i}$ (i-imaginary unit). It is known [1-3] that $m=3$ for $n=2, m=1$ for $n=3$, $m=4$ for $n=4$. The angular parameter ϕ is taken in two forms: $\phi=k z$ in the linear case and $\phi=\phi(\alpha z)$ in the nonlinear case, where parameters k and α and variable z will be defined below.

If a certain matrix M is unitary and anti-Hermitian then $M^{-1}=-M$. On the other hand if any $(n \times n)$-matrix M satisfies the property $M^{2}=-E_{n}$ then $M=-M^{-1}$. Thus we can state that the algebra of matrices M_{j} is based on two main properties:

$$
\begin{equation*}
M_{j}^{2}=-E_{n} \quad \text { and } \quad M_{i} M_{j}=-M_{j} M_{i} \quad \text { for } \quad i \neq j \tag{2}
\end{equation*}
$$

Properties (2) allow us to represent function u_{n} in the form of a matrix exponent

$$
\begin{equation*}
u_{n}(\phi)=\exp \left(\mathrm{i} \phi a_{j} A_{j}\right) \quad \text { where } \quad A_{j}=-\mathrm{i} M_{j} \tag{3}
\end{equation*}
$$

Product $a_{j} A_{j}$ means summing over $j=1, \ldots, m$; matrices A_{j} are Hermitian in contrast to anti-Hermitian matrices M_{j}.

Let us start with construction of matrices M_{j} which satisfy (2). For $n=2$ we form a matrix function u_{2} via unit quaternions, i.e. we take $M_{j}=H_{j}$ where

$$
H_{1}=\left(\begin{array}{cc}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) \quad H_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad H_{3}=\left(\begin{array}{cc}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right) .
$$

For $n=4$ the following matrices can be proposed:
$B_{j}=\left(\begin{array}{cc}H_{j} & 0 \\ 0 & -H_{j}\end{array}\right) \quad$ for $\quad j=1,2,3 \quad$ and $\quad B_{4}=\left(\begin{array}{cc}0 & E_{2} \\ -E_{2} & 0\end{array}\right)$.
For $n=8$ we form the matrices
$C_{j}=\left(\begin{array}{cc}B_{j} & 0 \\ 0 & -B_{j}\end{array}\right) \quad$ for $\quad j=1,2,3,4 \quad$ and $\quad C_{5}=\left(\begin{array}{cc}0 & E_{4} \\ -E_{4} & 0\end{array}\right)$.
It is easy to verify that the four matrices B and the five matrices C are linear-independent and satisfy (2).

Another way of constructing matrices of the fourth and the eighth order is based on application of the Pauli and the Dirac matrices. Note that the Pauli matrices σ_{j} are Hermitian and connected with quaternions via relations

$$
\sigma_{1}=-\mathrm{i} H_{1} \quad \sigma_{2}=\mathrm{i} H_{2} \quad \sigma_{3}=-\mathrm{i} H_{3}
$$

The Dirac (4×4)-matrices γ_{j} for $j=1,2,3,4$ are formed from σ-matrices as usual
$\gamma_{j}=\left(\begin{array}{cc}0 & \sigma_{j} \\ -\sigma_{j} & 0\end{array}\right) \quad$ for $\quad j=1,2,3 \quad$ and $\quad \gamma_{4}=\left(\begin{array}{cc}\mathrm{i} E_{2} & 0 \\ 0 & -\mathrm{i} E_{2}\end{array}\right)$.
In an analogous way we can form (8×8)-matrices from Hermitian $\mathrm{i} \gamma_{j}$-matrices, i.e. we set
$D_{j}=\left(\begin{array}{cc}0 & \mathrm{i} \gamma_{j} \\ -\mathrm{i} \gamma_{j} & 0\end{array}\right) \quad$ for $\quad j=1,2,3,4 \quad$ and $\quad D_{5}=\left(\begin{array}{cc}\mathrm{i} E_{4} & 0 \\ 0 & -\mathrm{i} E_{4}\end{array}\right)$.
We define more exactly the two triples of (6×6)-matrices F from [3] as
$F_{j}=\left(\begin{array}{cc}H_{j} & 0 \\ 0 & \gamma_{j}\end{array}\right) \quad$ and $\quad F_{j+3}=\left(\begin{array}{cc}H_{j} & 0 \\ 0 & \gamma_{j+1}\end{array}\right) \quad$ for $\quad j=1,2,3$.
Each triple satisfies (2) and all six matrices are linear-independent.
For odd n it is known [3] that there do not exist two matrices which anti-commute with each other in a set of unitary anti-Hermitian (3×3)-matrices. However, as is shown in [1] solution u_{3} with a single unitary anti-Hermitian matrix has a rich intrinsic structure in a subspace based on Hermitian matrices. The Clifford algebra $C(0, n)$ for odd n gives additional possibilities for construction of the matrix solution. The algebra $C(0, n)$ has n generators e_{j} which obey properties (2) for $j=1, \ldots, n$. This algebra is realized as that of pairs $[a, b],[c, d], \ldots$ with operations of addition $([a+c, b+d]$), multiplication ($[a c, b d]$) and multiplication by real numbers ($[\lambda a, \lambda b]$).

It follows from the Salingaros result [5] that $C(0,3)$ is realized in the form of the direct sum $H \oplus H$ where H are the quaternions H_{j}. It is easy to verify that element $\hat{M}_{j}=\left[H_{j}, H_{j}\right]$ satisfies the properties (2) provided $\hat{E}_{n}=\left[E_{n}, E_{n}\right]$ is the unit in $C(0, n)$. Thus we construct, in addition to u_{3}, a matrix function in the form

$$
u_{3}^{+}(\phi)=\cos (\phi)\left[E_{2}, E_{2}\right]+\sin (\phi) \sum_{j=1}^{3} a_{j}\left[H_{j}, H_{j}\right] .
$$

Due to operations of addition and multiplication by real numbers the function u_{3}^{+}can be written in the form $u_{3}^{+}=\left[u_{2}, u_{2}\right]$. Note that the pair $\left[H_{j}, H_{j}^{*}\right]$ can be used to form the function $u_{3}^{-}=\left[u_{2}, u_{2}^{*}\right]$. Analogously, we can form the matrix functions of the fifth order $u_{5}^{+}=\left[u_{4}, u_{4}\right]$ and $u_{5}^{-}=\left[u_{4}, u_{4}^{*}\right]$ and of the seventh order $u_{7}^{+}=\left[u_{6}, u_{6}\right]$ and $u_{7}^{-}=\left[u_{6}, u_{6}^{*}\right]$. These two forms, u^{+}and u^{-}, of matrix solutions can be useful for description of coupled particles and particle-anti-particle pairs.

We restrict ourselves by constructing unitary anti-Hermitian anti-commuting matrices up to the eighth order because of the Coquereaux theorem of periodicity [6], which states that all algebras $C(0, n+8)$ are isomorphic to the direct product of $C(0, n)$ and $C(0,8)$.

Consider now the nonlinear Klein-Gordon (KG) equation for normalized value u in natural units $c=1=\hbar$

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u+\frac{\mathrm{d} Q}{\mathrm{~d} u}=0 \quad Q(u)=\frac{\lambda^{2}}{4}\left(u^{2}-1\right)^{2} \tag{4}
\end{equation*}
$$

It follows from the form of the anharmonic potential Q with two minima (basic states $u=1$ and -1) that equation (4) describes a transition from one basic state to another. The parameter λ is the mass. According to our approach we choose in the three-dimensional space the direction $x=\sum_{j=1}^{3} c_{j} x_{j}$ with $\sum_{j=1}^{3} c_{j}^{2}=1$, and next we pass to the moving frame of reference $z=x-v t$ (here v is the velocity) and reduce equation (1) to the ordinary differential equation

$$
\begin{equation*}
\left(v^{2}-1\right) \frac{\mathrm{d}^{2} u}{\mathrm{~d} z^{2}}=-\lambda^{2}\left(u^{3}-u\right) \tag{5}
\end{equation*}
$$

Let us prove that all forms of the matrix functions constructed above satisfy the KG equation for a special choice of the argument ϕ.

Theorem 1. The matrix functions $u_{n}, u_{n}^{*}, u_{j}^{+}, u_{j}^{-}$for indices $n=1,2, \ldots, 8$ and $j=3,5,7$ and for argument

$$
\phi \equiv \phi(\alpha z)=\operatorname{arccot}(-\sinh (\alpha z)) \quad \alpha=\lambda \sqrt{\frac{2}{1-v^{2}}} \quad v^{2}<1
$$

satisfy equation (5) and, hence, (4).
Proof. Consider the function $u_{n}(\phi)$. From the definition of the angular parameter we find $\cos (\phi)=-\tanh (\alpha z)$ and $\sin (\phi)=\operatorname{sech}(\alpha z)$. Differentiating the last equality with respect to z and taking into account the preceding equality we obtain $\phi^{\prime}=\alpha \sin (\phi)$ and $\phi^{\prime \prime}=$ $\alpha^{2} \sin (\phi) \cos (\phi)$. To simplify the expressions we rewrite (1) in the form $u=\cos (\phi)+\sin (\phi) \Sigma$ where E_{n} is replaced by unity and the matrix sum is replaced by Σ. It follows from (2) and the unit norm of vector a that equality $\Sigma^{2}=-1$ is valid. Simple computations lead to the following two equalities:

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} u}{\mathrm{~d} z^{2}}=\alpha^{2} \sin (\phi)(-\sin (2 \phi)+\cos (2 \phi) \Sigma) \\
& u\left(u^{2}-1\right)=2 \sin (\phi)(-\sin (2 \phi)+\cos (2 \phi) \Sigma)
\end{aligned}
$$

Now, due to the relation $\alpha^{2}\left(v^{2}-1\right)=-2 \lambda^{2}$ we state that the function $u=u_{n}(\phi)$ satisfies equation (5). In turn, for Hermitian conjugated matrix function u_{n}^{*} it is clear that $M_{j}^{*}=-M_{j}$ satisfies (2) and, hence, $\Sigma^{2}=-1$. Thus in the same way as above it is proved that u_{n}^{*} also satisfies (5). Now it is evident that functions u_{j}^{+}and u_{j}^{-}satisfy (5) as well. The theorem is proved.

Note that the solution $u_{1}(\phi)=\exp (\mathrm{i} \phi)$ varies from 1 to -1 and its negative double $-u_{1}(\phi)=\exp (\mathrm{i}(\phi+\pi))$ varies from -1 to 1 if ϕ increases from 0 (for $z=-\infty$) to π (for
$z=\infty)$. The solution $u_{2}(\phi)=\exp \left(\mathrm{i} \phi a_{j} A_{j}\right)$ (summing over $j=1,2,3$) for $A_{j}=-\mathrm{i} H_{j}$ varies from E_{2} to $-E_{2}$ in the same region of ϕ.

Consider now a linear wave equation, the so-called Klein-Gordon-Fock (KGF) equation $[4,7]$

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u+\mu^{2} u=0 \tag{6}
\end{equation*}
$$

where μ is the mass. Equation (6) can be derived from (4) if one takes $Q=\mu^{2} u^{2} / 2$. For a free particle equation (6) for $c=1=\hbar$ is obtained from the relativistic relation $E^{2}=p^{2} c^{2}+\mu^{2} c^{4}$ [7] by using operators of energy E and momentum $p=\left(p_{1}, p_{2}, p_{3}\right)$ in the form, respectively, $\mathrm{i} \hbar \partial / \partial t$ and $p_{j}=-\mathrm{i} \hbar \partial / \partial x_{j}$. Note that the Schrödinger equation $\mathrm{i} \partial \psi / \partial t=H \psi$ for Hamiltonian $H=\sqrt{p^{2}+\mu^{2}}$, when squared, also gives the same equation (6).

If the origin of the moving frame of reference is placed at a pointwise particle so that $p=0$, then equation (6) turns into the equation of a harmonic oscillator

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+\omega^{2} u=0 \quad \text { where } \quad \omega^{2}=\mu^{2} \tag{7}
\end{equation*}
$$

For $u_{n}(\phi)$ in the exponential form (3) with $\phi=k z$ we find due to $\left(a_{j} A_{j}\right)^{2}=E_{n}$ that $\partial^{2} u_{n} / \partial t^{2}=-v^{2} k^{2} u_{n}$. Thus $u_{n}(k z)=\exp \left(\mathrm{i} k z a_{j} A_{j}\right)$ satisfies (7) and, hence, (6) provided $k^{2} v^{2}=\omega^{2}=\mu^{2}$.

Each unitary matrix $u_{n}(\phi)(n=2, \ldots, 8)$ performs a certain rotation. For example, spinmatrix $u_{2}(\phi)$ according to the terminology of Penrose and Rindler [8] turns a unit sphere by an angle 2ϕ around vector $a=\left(a_{1}, a_{2}, a_{3}\right)$. It is natural to connect the direction of vector a with that of the intrinsic angular momentum, i.e. with the spin vector. The matrix u_{3} describes rotations around three directions corresponding to basis vectors in a space of Hermitian matrices A_{j} [1].

Due to the fact that $u_{n}(k z+C)$ also satisfies (7) and (6) for any real C we can construct a geometrical image of the pair $u_{1}(C)$ and $u_{2}(C)$ in the form of a torus for $0 \leqslant C \leqslant 2 \pi$ and for $z=0$. Indeed, the solution $u_{1}(C)$ describes the unit cycle. Let the point $\exp (\mathrm{i} C)$ for fixed C be the centre of the unit sphere. In the time in which the parameter C varies from 0 to 2π the solution $u_{2}(C)$ turns the unit sphere in such a way that the sphere forms a torus and each point on the sphere describes a wound curve around the unit cycle.

The matrix $u_{4}(k z)=\exp \left(\mathrm{i} k z a_{j} A_{j}\right)$ for $A_{j}=-\mathrm{i} \gamma_{j}$ is remarkable in the fact that it satisfies the Dirac equation. Consider, indeed, the Dirac equation in the form [9]

$$
\begin{equation*}
\left(\mathrm{i} \gamma_{0} \partial / \partial t-\mathrm{i} \gamma_{j} p_{j}-\mu\right) u=0 \quad \text { where } \quad \mathrm{i} \gamma_{0}=\gamma_{4} . \tag{8}
\end{equation*}
$$

The matrix $u_{4}(k z)$ being substituted into (8), provided $p=0$ is in the moving frame of reference, gives $-k v \gamma_{4} a_{j} \gamma_{j}-\mu=0$. This equation is satisfied for $k v=\mu, a_{4}=1$ and $a_{1}=a_{2}=a_{3}=0$ due to the property $\gamma_{j}^{2}=-1$. It is evident that $u_{4}^{*}(k z)$ satisfies the Hermitian-conjugated Dirac equation. The KGF equation (6) can be decomposed via (8×8)-matrices D_{j} into two equations: a basic one and another Hermitian-conjugated one (analogously to the Dirac equations) with solutions u_{8} and u_{8}^{*} which are based on matrices D_{j} and D_{j}^{*}, respectively.

The solutions u_{4} and u_{8} constructed by use of matrices B_{j} and C_{j}, respectively, have another significant property: $u_{4}=\operatorname{diag}\left(u_{2}, u_{2}^{*}\right)$ for $a=\left(a_{1}, a_{2}, a_{3}, 0\right)$ and $u_{8}=\operatorname{diag}\left(u_{4}, u_{4}^{*}\right)$ for $a=\left(a_{1}, a_{2}, a_{3}, 0,0\right)$. Due to this diagonal representation in the same way as for spinmatrix $u_{2}(\phi)$ the following result can be derived: the matrix solution $u_{4}(\phi)$ performs a rotation by the angle 4ϕ and the matrix solution $u_{8}(\phi)$ performs a rotation by the angle 8π. We hope that matrix solutions u_{n} with their rotational properties will be useful for description of the intrinsic rotations of the particles.

References

[1] Gudkov V V 1999 J. Phys. A: Math. Gen. 32 L281
[2] Gudkov V V 1997 J. Math. Phys. 384794
[3] Gudkov V V 1997 Theor. Math. Phys. 1131231
[4] Vladimirov Ju S 1987 Dimension of Physical Space-Time and Unification of Interactions (Moscow: MGU)
[5] Salingaros N 1981 J. Math. Phys. 22226
[6] Coquereaux R 1982 Phys. Rev. B 115389
[7] Valentin L 1986 Physique Subatomique: Noyaux et Particules (Moscow: Mir)
[8] Penrose R and Rindler W 1987 Spinors and Space-Time, Two-Spinor Calculus and Relativistic Fields vol 1 (Moscow: Mir)
[9] Greiner W and Muller B 1996 Gauge Theory of Weak Interactions (Berlin: Springer)

